
C O P Y R I G H T R A N D A L L M A A S , 2 0 0 5 - 2 0 1 8

F I L E G:\My Documents\Glossary\Glossary Software Languages;2.doc

R A N D A L L M A A S · 2 0 1 8 . 0 8 . 1 3

action

statements
types of

Data access (ary’s, fields, files & URL’s)

Event generation

Test

Transformation: Data conversion, File conversion, Affine Graphics Transforms, Color

Transforms, State Machine Transforms, String transforms

Bridge & Functions: using API’s of frameworks, commonly expected API’s, event src

connection

activity networks
intermediate
language
representation in
compilers

Compiles often use a form of activity on vertex networks when converting a program into

low level instructions. The `activity' is called a basic block. A basic block is an "instruction

sequence with no branches into or out of the middle;" branches to the block go to the top,

and the bottom of the block has one or more branches (determined by some condition) that

connect to the next block(s). The edges may be weighted based upon factors such as

frequency of activation, or importance of the branch.

The goal of the compiler is to flatten out this graph into an efficient string of instructions. If

the graph was left `as-is' the system would suffer significant penalties from the pointer

chasing involved.

algorithms
generic

How can you represent efficient algorithms independently of my particular data-

representation scheme?

How can you provide an interface to a diverse set of data representation strategies that

gives us the flexibility to choose appropriate representations but also allows algorithms that

work without detailed knowledge of internals.

Generic algorithms used the interface rather interact with data directly.

API Application Programming Interface. see interface

associativity See operator

basic block A sequence of instructions to branch point.

bill of materials
problem

Bill of materials

Product mix

Quantity on hand (stock)

Quantity to buy from suppliers. Suppliers offer different price points. Suppliers differ in

min/max quantities, identifying suppliers, services agreements.

Query:

Select ItemId, Qty
 from B BOM, P Projects
where B . projectID == P . projected

Update from P0, P1
Qty = (select Qty
 from BOM B

GLOSSARY

Software Languages

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 2

 where B . projectId = P1 . projected && B . itemId = P1 . itemId)

Backus-Naur
Form

A notation used to describe the admissible calling sequences for an interface.

Traditionally this form is used to define the syntax of a language.

see also interface

Backs-Naur
Form

Used to describe acceptable calling sequences for an interface

category A module that implements some calls, but is not guaranteed to provide an

interface.

interface A set of calls that work together, and must be implemented by `objects’ in order

for the object to say it implements the interface

protocol

BDD

binary decision
diagram

A data structure specialized to represent Boolean-logic and software branches. It is

common with formal verification of digital designs and some kinds of software. A

given path through the system can be represented as a binary string, since each branch

is binary. Some analysis employ regular expressions of paths that must be present – or

must not be present.

see also bounded model checking, regular expression, satisfaction (Boolean)

behavior
allocation

“The act of choosing which subroutines to associate with which classes, and which

subroutines call which other subroutines.” “has the biggest impact on the system.”

binding The sense of a symbol having an assigned value.

bound Symbol has a precise value

free Symbol is without value.

BNF see Backus-Naur Form

Boom hierarchy In a hierarchy of types, each level has a definition of three operations:

FILTER: Removes elements from a structure. Each x in S such that P(x).

MAP: Applies a function to all elements in a structure. Each f(x) for all x in S.

REDUCE: Combines elements in a structure.

bounded model
checking

A formal analysis usually by treating a system’s behaviour as state transitions and

analyzing until a depth-limited has been reached. The limit is expanded until a rule

violation is found. The model is often described as a Kripke structure, treating the

system as a set of state machines, which communicate via variables. The state of the

system is the state of all the state machines and the variables. The systems state

transition diagram can be examined; often it is converted into a binary-decision diagram.

Using a combination of many different state models, each simple in itself, may make the

problem more practical.

see also BDD (binary decision diagram), Büchi automaton, temporal logic (linear),

regular expression, satisfaction (Boolean)

Büchi automaton A state machine, similar to a finite state machine, which can take infinite inputs; it

includes a set of initial states and a set of good states. (They are also like Kripke

structures, but interpreted slightly differently). They are used in model (or protocol)

checking to say that some action will eventually be taken after event y (to find cases

where this doesn’t happen), or that action x will never occur after the event.

See also bounded model checking, Kripke structure, model checking, temporal logic

(linear)

call signature A descriptor specifying the types of each passed parameter.

category An Objective-C term that allows methods for an object to implemented in different files

without generating compilation errors (due to missing methods). This allows methods to

Table 1: Distinction between

Backus-Naur Form, interface,

and protocol

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 3

be `added’ to existing classes, expanding their interface.

class cluster Related classes that are typically grouped by function.

compile To prepare a machine language program from a program written in a calculus

(programming language), making use of the overall structure of the program or

generating more than one machine instruction for each symbolic sentence, or both as

well as performing the function of an assembler.

compiler Gathers information from source files and puts together a program that will work with a

given architecture.

Simple compilers translate with less complex optimizations and allocations. Very

simple library and framework call injection. More complex compilers include complex

optimization and subroutine formation to work with library call substitutions and

framework.

see also reduction procedure

data dependency The level of data dependency governs:

Whether or not we can parallelize the algorithm

Whether we can use other techniques to simplify recursion time & space

dynamic Selected code blocks are compiled into native machine code and linked into the

program. Selection occurs by automatically frequently used VM code.

incremental A subroutine is compiled as soon or late as possible. The object code is placed into a

repository. Errors are stored and retrieved upon request.

complexity
Chaitlin,
Kolmogorov

The length of the smallest program to reproduce the behaviour.

See also purity

measures Complexity measures include length of function, depth of nesting, number of variables

in expression.

McCabe cyclomatic
complexity

CC=E-(N+P)

Complexity = #Edges – (#Nodes + #Connected Components)

Estimate - #Decision nodes + 1

A = #Attributes (fields) in class

mA = # of (methods in class | procedures) accessing given attribute A

m # of (procedures | methods in class)

sum over all the attributes / fields:



LCOM2 1
1

M * a
mA

LCOM3
1

m 1
m 

1

a
mA








>1 -> lack of cohesion; danger

see also purity

Complexity # Riskiness

1-10 Simple, low risk

11-20 Moderately complex;

moderate risk

21-50 Complex, high risk

>50 Untestable, very high risk

Table 2: Complexity

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 4

compositionality The meaning of a structure, phrase or formula is a function of the meaning of the

elements, their mode of combination, and the context. Decomposition is often

concerned with finding such a structuring.

context

data
normalization
rules of

Attempts to reduce redundancy in a database, and provide useful constraints by striving

to define the data as a set of relations in which all of the attributes are functionally

dependent on only the primary key. Each step of normalizing produces more tables than

in higher-precision forms, with fewer columns per table. The rules are:

Eliminate repeating groups

Eliminate redundant data

Eliminate columns not dependent on key

Isolate independent multiple relationships

Isolate semantically related multiple relationships

 Note: structuring a model purely based on the normalization rules will yield a poor

model. The complexity of the work rapidly rises with the increase of tables, usually by

an order of magnitude. Ie, normalizing table A (lets say O(n) access time) splitting it

into two tables, would produce an access time of O(n2).

delegate A link to another object. A delegate is used to modify the behaviour of a primary object. A

common use of delegates is as a data source – a means to get the data to display.

See also notification.

delegate Delegates that are implemented as callbacks, are never queued and are faster

than notifications. Like notifications, they can be used to transfer important

information about the change in state of a source. Unlike a notification, the

callback allows return codes from the delegate. Delegates are used to affect the

behaviour of the source object.

event The abstract change in state, or activity. These are often represented as

notifications.

message Messages are the carrier of notifications and event information.

notification These are the codified form an event. Unlike delegates, they are often queued

for later delivery, and multiple objects may register to receive them. Like

delegates, they are used to observe and respond to changes in the originating

object. Also, like delegates, many systems implement the registration in a

publish-subscribe model, with a callback to the receiver to deliver the

notification.

distributed
linker

Similar to a conventional linker, it is concerned with connecting software elements in some

form of distributed environment, connected via network protocols or buses.

See also discovery, lookup service

Entscheidungs-

problem

Literally decision problem – a question of whether or not one can decide if a statement is

true. The Halting problem, where a machine changes what it does to invalidate your

prediction (decision), is the classic proof. Most problems are not so perverse, but those

that are can be prevented by not allowing such decisions to be known to the system.

see also Halting problem

equation See also expression, function, interpretation, model, propositions, sentences, situations

equation A relation between two expression

expression Doesn't have a relational comparison

function Assigns unique value to each input

Table 3: Distinction between

delegates, events, and

notifications

Table 4: distinction between

expression

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 5

interpretation Assigns intention

model Assigns extension

statement ?

evaluation
procedure

A stepwise, often mechanical, process of inferring the values of variables, or it a given

statement is true.

see also intermediary language reduction procedure, valuation function

exception Destructors get called as it traverses back toward a handler. Checked exceptions.

expression See equation

extensible
language

“A base language which provides a complete but minimal set of primitive. Facilities,

such as elementary data types, and simple operations and control constants.

“Extension mechanisms which allow the definition of new language features in terms of

the base language primitives.

Semantic extensions: introduce new kinds of objects, data types

Syntactic extensions. New notations for existing or user defined mechanisms.

event The abstract change in state or activity. Used to observe and respond to commands,

changes in state, or other activity.

see delegate for the distinction from other items.

see notification for the embodiment of events.

event handler Returns false if further processing may be needed; true if the event was completely

handled.

Event handler may generate new event putting them into queue.

Event handling’s queue discipline. The queue manager needs to support a concept of

priority. If there is a mouse click or button press event, it should be processed ahead

of (not yet processed) events, like window move, paint, and z-order change. (Why:

because the event’s where sent relative to what the window is on the screen, but

changing the screen and then processing the events is bad.)

formal system
characterizing
precisely

Syntax streamlining

An arithmetization method (e.g. Gödel numbering)

A definite method of going back and forth between the arithmetic number coding and

conventional notation

To make tractable assign id # to the objects of your attention: each symbol, string,

well-formed formula, finite chain of those, proof, etc. get such a number

forward progress

framework The Framework of a language – or a special core section of the language – is of critical

importance. The operations in C are translated either into machine code or into calls to this

Framework.

The framework is seldom a separate thing from the language – English is not just a mangle

blob of German syntax, with each speaker possessing a unique dictionary. While each

speaker, each bit of literature, seems to have its own peculiar lexicon, no massive dictionaries

are shipped with Ulysses, and there are no standardization committees for the orthography,

usage, interpretation and import of a lexicon. This is done for C; without the bureaucracy,

utterances within the C language were always creoles interpretable only by the smallest of

tribes.

When a C compiler sees a construct such as

 char A[50]=...;

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 6

 char B[50]=A;

it will automatically include a memcpy() or equivalent. Similar is true for many math

constructs, such as division (mapping to _ldiv()). And when the compiler sees

 char A[50]={0};

It will substitute in a memset() or bzero()

This mapping is fine and good, except that the rules for this mapping are not well documented.

The compiler is dependent upon an interface to the framework, but it doesn't tell the

programmer what that interface will be. I personally have encountered this in two ways. First,

there may be case use of _ldiv() or is undesirable, for performance, safety or other reasons.

Second, when targeting other architectures, it can be a surprise to suddenly discover a new

requirement.

function

signature Signatures of functions to help identify the same or similar:

1. Signature of structure – e.g. constant values are ignored

2. Signature of function – e.g. constant values are used

f1(x) {return x <= 1 ? 1:f(x-1)*x}

f2(x) {return x<2?2:f(x-1)*x}

have the same structure signature but different function signatures.

generalization An accurate statement in precise language of what was found with respect to the

tendencies, relationships, regularities or patterning among variables under study.

Heckel’s
algorithm

Finds the longest recurring substring.

See also Bentley-McIlroy matching

idempotent Many calls to the same procedure have the same result as a single call

ILOG Tools: solver, scheduler, dispatcher, configuration

Terms: powerful, advanced, versatile, easy, clear

Application Long-term Published schedule Operational Schedule

Scope Strategic Tactical Operational

Timesteps Month <-Week->Days-> Hour

Drivers Money … Feasibility

Technique LP MIP/Hybrid CP

immutable The object, file, or resource cannot be modified; hard-linking it is preferred to an

actual copy.

see hard-link, mutable

intermediary
language

There is some debate whether a model’s interpretation should be described in terms of

a machine (i.e., an evaluation procedure), or translated into a set of declarative

statements that must be used by another model to infer the values. With a single

model, or small number of models, it is simpler to use a direct evaluation procedure.

With a large number of models, it may be easier to translate each into a more

sophisticated intermediary language. This also reduces the combinatorial complexity

of translating from one language to another: either you need two translators for every

language (two and from the Intermediary language) or 2n2 translators.

see also compiler, evaluation procedure, valuation function.

interface An interface is a defined method of accessing functionality. An object may support

several interfaces.

see also Backus-Naur Form

Table 5: Planning horizon

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 7

interpretation

interpretation
function

Interprets sentences in the language. The language can be very simple or complex.

I’m not familiar with any past a Chomsky level 2. The language can be a non-trivial

language of any form that can be systematically interpreted.

see also evaluation procedure, intermediary language, valuation function

interval A range of numbers; has the advantage of a compact representation and a fast set of

operations.

iterator A construct that allows the examination of each item in an aggregate.

Kripke structure Checks that temporal logic formulae are valid. A counter example is a trace of the

system that violates the property. State transition structure; each state is a value at

time. All behaviours of the Kripke structure satisfy or violate formula.

LISP “a compiled Lisp program is no longer Lisp at all. It breaks the fundamental rule of

‘formal equivalence of code and data’..”

Scheme There are two levels to syntax in Lisp family. The ‘surface’ syntax is the

parenthesized prefix expressions. The ‘deep’ syntax is the one recognized by the

interpreter (or compiler), which uses an expression’s structure to determine how to

evaluate it. With macros, Scheme has a transformational grammar, not a context-free

grammar.

model1 A binding of variables to values. See also satisfaction

model finder A satisfaction procedure, finds the bindings of variables (the model) that make the

specification true; often a constraint solver (compile and hand to a SAT solver)

modeling language Expresses structure constraints and behaviour

model2 A formal framework for using a few central relationships to represent the basic

features of a complex system; models discard important elements and philosophical

considerations: they are not truth. Models are often described by their role, elements,

and test of specification error.

Models should be open about the underlying theoretical principles. These principles

must have a concrete form in definite algebraic terms. The model should be

transparent about its connections, mechanisms, and flow, coupling effects to outputs.

It should be easy to tinker with, yet the user should not have to understand exactly

how it works. What are the (hereto fore) unseen expectations?

see endogenous variables, functional explanation, Markov model, Poisson model

Term Distinction

emulation Imitates the behaviour of a system, without concern for internal

processes

evaluation To assign a value to an expression

execution A sequence of instruction passed to an external interpreter

interpretation Assigns interpretation.

model Assigns extensions – the values and sets

paravirtualization Similar to virtualization, except it presents the illusion of a

device slightly different from the underlying hardware.

simulation Mimics the behaviour of a system, with a high degree of fidelity

to internal processes, state, etc.

virtualization Effects the illusion of each user of a device being the only user;

the multiplexing software typically saves and restores the state

context for each user.

http://software-

lab.de/radical.pdf

Models are “clipped and

pruned till they resemble the

conventional birds and

animals of decorative art.”

Alfred Marshall.

Table 6: Distinction between

related terms

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 8

Type Distinction

analogical models

behavioral Imitates the behaviour of a system, with-out concern for

internal processes

declarative models can represent important aspects of static systems, but

dynamic systems are largely beyond their ability. Most tense

analysis in modal systems treat histories as points in time

with different sets of facts, ignoring change.

idealized models

Measurement models Maps measurements to their theoretical constructs

Parametric models Predicts values, especially when observables and/or actions

are primarily numerical.

Phenomological

models

Statistical models A type of behavioural model based on probabilities

Structural models Maps causal and correlative links between theoretical

variables. Specifies components and interconnection, often a

structural model is a specific implementation.

behavioural model Describes the system primarily using

Its actions and actions of its components,

Its interaction with the outside world,

Interactions of its components,

Causality relation

Describes the function and timing, independent of a specific implementation.

see also functional explanation

economic models Modeling economics poses a challenge since economic relations are very vague.

Relationships only have a topology, but no definitive structure. (Does a rise in

output, mean a small linear change, exponential, or a probability?) This means the

integration of changes will be way off. The relationships may be wrong, or purely

ideological; they may be correlative for a while, but the correlations may disappear

once the state or other factor tries to manipulate them. Can’t predict results based on

the results under an old regime.

Many of the elements are linked in a complex system of symbolic equations. They

are not sufficiently independent or isolated to examine a subsystem; to solve one

part, you need to solve all of the equations simultaneously. Easy to have results that

cannot be predicted with naïve models. The messy transitions of the real world are

not predicted.

There are genres of economic models. Macro-economic models to demonstrate the

circular flow of the economy. Computable General Equilibrium models: these focus

on the underlying structure of the economy, ignoring business cycles variations.

They can capture one-off difference policy but not the recurring, continuing effects.

identification Constructing a model by parts and specification

limits of models Models are not independent checks of their creators: models largely exist to codify a

view. Some limits include: experts have their own incentives, there is a high demand

for models, no matter their quality. Model selection and designed is to confirm the

researcher’s ideology, based on (in part) topological and structural changes.

models A model represents a particular context in which a little algebra is evaluated – a

Table 7: Distinction between

types of models

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 9

in logic system of axioms, operators, rules for combining variables and operators into

formulae, a set of entities, their properties and relationships, and a specification of

the language relates to those entities and relationships, constraints on what properties

there are. These models allow only deductive logic.

see also valuation function

non-standard Alternative interpretations. Try to rule out those interpretations with ambiguity,

although this can be hard to spot. Things other than intended may be well described

by the model.

numerical model Numerical models provide numerical answers to policy questions.

partial model Only can evaluation some statements.

physics Series of equations of state, relationships between material bodies, and describe their

movement, action, behaviour, etc. This is usually divided into parameters,

expressions, functions, geometry, coordinate system, materials, analysis.

satisfaction models In order of increasing difficult: parameters are independent; pairwise; all pairs.

structured models Means of evaluating a model’s quality and characteristics.

model theory Concerned with making models of a theory. A theory has a model if and only if the

theory is consistent. Such a model is a language with an abstract algebra to

implement the semantics. An interpretation function that maps language elements to

constants, functions, and predicates. The description of the language is often a table

with the syntax and how to evaluate predicate phrases of that syntax. The syntax: the

kinds of variable (if the language is typed) and how they combine with operators and

other variables. The set of entities allowed may be more than a variable – it may

include more complex noun phrases, e.g. GlobalCheckFor $var.

Discussions of such models focus largely on the syntax (esp. well-formed formula)

although the issues with interpreting meaning and finding satisfactory solutions is of

greater importance in the long term (a language is learned ‘once’ but used for a long

time), and more difficult.

see archetypical language understanding, evaluation

model world Composed of

A set of possible elements

A set of possible attribute names

A set of possible attribute values

A set of possible world states

see also universe of discourse

mutable The object, file, or resource can be modified.

see also immutable

names We change the name of things to better describe their role and function, and to bring

it into the metaphor/paradigm.

criteria Should convery functionality instead of implementation.

Orthogonality. Embody a certain predictability in their names. Some kinds of names

should have pairs: get & set, encrypt & decrypt, read & write.

 “The verbosity of all names should be proportional to the scope of the name.”

external source
selecting

“In general, follow the languages conventions in variable name and other things.”

(Robert)

“Whenever possible, name sets whatever they’re called in the problem domain –

whatever the customer calls them.” (Kossuth)

“Invent as little new terminology as possible” (ibid)

Kirrily ‘Skud’ Robert, In

Defense of Coding Standards

http://www.perl.org/pub/200

0/01/CodingStandard.html

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 10

“If at all possible, when inventing terminology, do not invent new acronyms” (ibid)

If “using a tool… you might want to follow the tool’s naming conventions” (ibid)

relationships Use the proper verb phrase.

“Don’t name a binary relationship if you don’t have to, or atleast don’t define it

separately from the set it connects.” (Kovitz)

“If you want must name a binary relationship, consider making it a noun, especially

if the relationship is symmetrical.” (ibid)

“Consider converting any ternary relationship into named clauses.” (ibid)

“Naming a relation a verb or prepositional phrase… is most suitable when you want

to speak of the relationship as a predicate, that is, as an expression that is either true

or false.” (ibid)

“Functions or subroutine names should be verbs or verb clauses. It is unnecessary to

start a function name with ‘do’” (robert)

plurality “make a set’s name singular or plural according to what best applies to an individual

element of the set.” kovitz

“the plurality of a variable name should reflect the plurality of the data it contains.”

robert

 Don’t name “any set that you don’t refer to elsewhere in the document.” (kossith)

When “the customer uses the same name for several different sets that you must

distinguish [try to] find synonyms already in use. Do not call either set by the

ambiguous word; avoid it entirely.” kossith

notation Often a skillful choice of reference system simplifies the work.

notation
selecting

The choice of notation depends on:

The kinds of problems you’re trying to solve

What environment you’re trying to solve it in

With whom you’re trying to solve it

How does the problem or task decompose into a given notation

How easy is the problem to solve in the framework?

How elegantly?

Will it perform well?

notification Notifications can be used to

numerical
methods

Solving questions of valuation is better with (computer) analytic rather than symbolic

method. Most realistic problems can’t be solved analytically. There is no single method

(or a small number of methods) that both suffices and is tractable. Each potential

definition substituted for a given relation name requires a different method to solve –

each is a different problem. Worse, descriptions involving differential equation are even

more difficult than the rest: solutions of differential equation is a large of subfield of

math.

object system Object systems are ‘tightly coupled’: method base inheritance, events, delegates.

Polymorphism, inheritance, encapsulation.

Function access to
an object

In OOP a procedure can operate directly on an object if it is an instance method (ie an

object has a table of allowed procedures). Otherwise it needs to employ an intermediary

form.

OOP an academically ideological way of manipulating globals.

Tenants of polymorphism, encapsulation, inheritance

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 11

classification Classified by:

How object is identified,

What and how its state is stored or associated with the object,

How the object is coupled with others

How actions are dispatched, the complexity of lookup

operator Associativity – How to parenthesize with stream of same operators

Precedence – How to parenthesize a mix of different operators. The precedence of

an operator should not depend on the types of potential operands.

Order of evaluation --

optimization
last call

The local call frame (activation record) will no longer be needed once the call is made, so

a lot of resources can be cleaned up. It may not need to use a ‘call’ instruction, and may

use a jump instead. Some architectures put all return values into a register or single

memory area.

tail call A further refinement of the last call optimization when the call is to the current procedure.

The procedure can often be reworked into an iterative form, and may of the call fame

structures will not need to be set up in subsequent calls.

dead store
elimination

A=1; A=2;

loop unrolling Reduces branching in a loop. Duff’s device: increases index increment (or reduces the

max), repeats the inside of the body to balance, and initially jumps into one of these

redundant bodies so that the number of times executed are matched. Increasing the

increment to 4:

max=(origMax + 3) / 4;
switch(origMax % 4)
{
 case 0: do{ inner;
 case 3: inner;
 case 2: inner;
 case 1: inner;}
 while (–Max);
}

static optimization Predicated on the idea that repeating the optimization would be redundant and yield no

change. The costs be incurred once.

static single
assignment

Redundant expressions can be computed only once. Can be identified via Chow’s

algorithm. Partially redundant if redundant on some paths, but not all.

statistical
optimization

works toward optimizing the common case(s) , was measured by profilers.

superoptimization Converts an operation into a loop-free form.

order Usually the number of parameters.

See also rank

parsers A parser converts a sequence into another sequence:

 Outputj = Parseri,j Sequencei

this involves:

lexical: turning it into words and symbols

parsing based on the syntax

resolving the named variables, functions, types, and other elements

semantic actions based on matching the patterns

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 12

 Special cases of Parsers:

Top-down: LL(k)

Bottom-up: LR(k)

k = the amount we need to look ahead to distinguish between two or branches that we

should take)

Objectives:

Minimize the amount we need to look ahead

Minimize backtracking

of times we need to back track

Max depth we would back track

Average depth we would back track

Minimize the amount of state need to keep

Minimize work parser does. Backtracking, tests.

See also ATN, Chomsky hierarchy, Markov, regex, shift-reduce,

LALR(1) An approximation to LR(1) parsing.

LR(k) Bottom-up parser that became the definitive parsing solution (surpassing precedence

methods).

precedence 1963 Floyd: operator precedence

1966 Wirth: simple precedence

static parsing Take piece of text, determine its structure without executing it.

pattern matching The process of examining a string to locate substrings or to determine if a string has

certain properties.

predicate It is a phrase posited to be either true or false. It includes atleast one variable,

attribute or function; it may include an operator. There is often atleast one free

(unbound) variable. Not all predicates are genuine properties.

see also sentence

problem solution
search

Start with users knowledge of problem

Clear separation of constraints and combinatorial search

Discrete variables represent the primary decisions in the problem

High-level constraints represent the relationship between variables

Constraints can be combined to match the real-word’s complex constraints

Generate multiple solutions quickly

Refine solutions

procedural
semantics

The operations that one is supposed to carry out (rather than merely discussions of

possible facts). Meaning that a statement takes action or changes the world.

Backtracking can be very expensive (by throwing ‘exception’), unreliable (errors

reversible only by best effort) or not possible at all (as with destructive operations).

procedure form Function name

 Preconditions

 Parameter conditions

 Initial conditions

Frank DeRemer, MIT PhD

thesis, 1969

Donald Knuth “On the

Translation of Languages

from Left to Right”

Information and Control, 8

p607-639, 1965

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 13

 Routine

 Post-conditions

propositional

connectives

Boolean operators (not, and, or, etc.) or set operators.

programming
generic

Represents efficient algorithms independently of data-representation. Interface to

large set of data representations, and is flexible to choose appropriate representation.

language akin to a calculus with procedural semantics.

purity =Predicted length / Actual length

Length



 n1  n2

Predicted length of well-written program



 n1 log2(n1) n2 log2(n2)

n1 – number of unique operators

n2 – number of unique operands

N1 – total number of operators

N2 – total number of operands

Minimal volume



 log2(n1  n2) bits

Volume = information magnitude



 N1  N2 log2(n1  n2)

See also complexity

qualities brevity, clarity, simplicity.

latency, stringency

throughput

reliability, availability, performance, predicability

rank The rank of a formula is greater than or equal to the rank of each of its elements,

operators, and parameters.

See also order

reducibility The reverse of composability, concerned with decomposing statements into

observable terms.

reduction
procedure

Converts a declarative language into a procedural one.

see also compiler

reference A symbol may refer to something (usually this must be done thru a distinct meaning).

Maurice Halstead in 1970s

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 14

regular
expression

Two regular expressions are equivalent if they recognize the same set of strings.

Regular expressions can be differentiated using a set of rules analogous to

Leibniz rules of differentiation. Given a regular expression R1, the derivative

(with respect to symbol ‘a’) is a regular expression R2. R1 recognizes the strings

matched by R2 when they are prefixed by ‘a’.

See also Chomsky hierarchy, the method affine transforms for generating strings.

Table 8: Regular equivalences

 Equivalent to

a* aa*
ØX Ø
{empty string}X X

(Ø|X)
({empty string}|X)

Table 9: Symbolic differentiation of regular expressions

 Equivalent to



d

da
b Ø (b ≠ a)



d

da
a

{empty string}



d

da
a*

a*



d

da
a

a*



d

da
XY



d

da
X









Y



d

da
X |Y 



d

da
X |

d

da
Y











relation algebra Variables – properties of an entity – are compared. In CS this is used to specify

sets of entities. In bulk, files of fixed-length records of multiple fields, which

were selected and merged.

Table 10: Regular to Relation translator

 Relational

fields Column

files Relations
merges Joins
pointer Key
records Rows

S-plus syntax The elements of the syntax is divided into:

Literals:

Numbers and complex numbers

Strings

Names

Summary: A description of how

neurons behave, a pre-cursor of

regular expressions

Warren McCulloch and Walter

Pitts, “A logical calculus of the

ideas imminent in nervous

activity,” Bulletin of Math.

Biophysics 5 (1943) (reprinted in

Embodiments of Mind, MIT Press,

1965)

Summary: A regular expression

compiler (targeting the GE-TSS

machine), using an NFA.

Ken Thompson, “Regular

expression search algorithm,”

Communications of the ACM 11(6),

June 1968, p 419-422.

(http://doi.acm/org/10.1145/3633

47.363387)

Janusz Brzozowksi, “Derivatives of

Regular Expressions” Journal of the

Association of Computing

Machinery, V11N4 (October 164),

p481-494

Summary: Relational DBs are a

relabelling of existing practices

promoting a pretense.

Henry Baker, letter to ACM, Oct 15

1991,

http://home.pipeline.com/~hbaker

1/letters/CACM-

RelationalDatabases.html

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 15

Commands

Functions – defined by assignment

Symbolic constants

Calls

Simple

Operations

Subscripting

Assignments

Conditionals

Loops & Flow of Control

While, for, repeat

Next, break, return

Grouping: braces & parenthesis

satisfaction
Carnap

The values a formula is true for; if true for the value or range of values. Or, rather,

checking that a symbols value is consistent with the constraints.

See also resolution method, unification

Tarski Every possible value for every variable in the universe, so long as the formula is true.

boolean Givens:

A set of variables: v0,…vn

A formula using those variables

Assign each variable a value (0,1) such that the formula evaluates to 1 – or

find all such valid assignments. This is an NP complete task.

Steps:

“Decision step selects a variable for the next assignment, either statically

with a fixed variable order, or dynamically, depending on information

gathered during search.

“Deduction step infers information from the current partial assignment.

Boolean constraint propagation… exploits the fact that a partial assignment

can imply values for other variables.

“Diagnosis step analysis [a] contradictions’ cause and uses the inferred

knowledge to search more efficiently.”

see also BDD (binary decision diagram), bounded model checking

parameter search
problem

Givens:

Initial & boundary conditions

A set of constraints

Technique to solve the problem

Algorithm:

Starts by making an initial guess for the parameters

Calls the objective function & continues to adjust parameters to minimize

the objective function. If the results are not satisfactory, repeats,

finds the best parameters with fewest evaluations.

Evaluating the objective function. Calls differential equation and compares

Platzner, Marco “Boolean

Satisfiability” IEEE Computer,

IEEE Computer, April 2000,

p60

Summary: based on binary

Hyper-Resolution & Equality

Reduction can solve many SAT

problems without search.

Bacchus “Exploring the

Computation Trade of more

Reasoning and Less

Searching” 2002

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 16

them with real data.

Differential Equation solver. Returns solution of ODE’s for current

guesses.

scene description
graph

A hierarchical structure of nodes. Defines ordering of nodes.

Primary node: a group node, which may contain any number of other nodes, arranged

in a hierarchical fashion.

Fields: parameters that modify nodes. There are zero or more fields. Provide the data

to properly render scenes. Singly or multiple valued.

Self describing, a new node, but fully described.

Classification of node: shape, property (how shapes are drawn), group (collections of

nodes)

Non-standard, all the fields are described first

Name for identification purposes

Lights, cameras, materials, textures

selector Some identifier that refers to the method name so that no two identifiers refer the

same method name, and an identifier specifies only one method name. With special

discipline this can be where the selector is also a pointer to the method name.

shift-reduce
parsing

BNF grammar is converted into a series of nodes like:

A link to the symbol table

Whether or not the item can be a null match

List of next states

The list of next states is made when checking the network

The symbol table is three parts:

The symbol (character) which is matched

The operation: Shift (which state to go to), reduce (number of items and which action to

take), accept, error.

Hint: the extra bit of information for the operation

Then it builds a TRIE, assigning a number to each node first. The Trie is like the

symbol table, except that shifts have state numbers, and there is a column for number.

Then all of the symbols for next state are added, given a reduce step. Finally, all of the

remaining symbols are added, and given an error state.

See also parsing

signature Signatures are the list of types for a function’s parameters, or a struct. Even assembly

subroutines can be given signatures. This is very good at catching problems either at

compile-time or run-time – like the wrong number of parameters, or parameter type

mismatches. I accept the ability of a linker to choose from one of several different

implementations of a subroutine with the same name, but different parameter sets.

software
synthesis

see also compilation, path Pascal, System Generation

specification
ALGOL

Language specification tends to be divided along the lines of:

Structure of the language. Survey of the basic constituents, features.

Basic symbols, identifiers, number and strings, basic concepts. List of basic symbols,

quantities and values.

Expressions. How they are formed (syntax), and their meaning. Variables (and

subscripts), function designators, arithmetic, booleans expressions, designational

expressions

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 17

Statements: assignment, goto, dummy, for, procedure, compound statements and

blocks.

Declarations, usually including procedure, code bodies, scoping rules and influence of

scopes, evaluate of inner expressions.

statements
effect of

Change program state

Change what executes next via control flow, dependencies, program slicing

string a string is a sequence with an alphabet: lists, sets, arrays, streams, etc.

operations: length, truncate, hash, append

String canonicalization, paths, mapping trees, graph network to string.

, anagrams and palindromes, parsing tasks,KWIC index, DNA Genetic algorithms

Internal data structures and operations

String attributes

Turning special substrings into special characters

Morpheme problem, akin to parsing

Mapping string to extra without hash tables

alphabet alphabet properties: does alphabet have an end-of-string character? Size of character

representation (how many bits?)

Small alphabet implementations. Bit and byte sized characters are the most common

type of string; there are more fast algorithms available for these.

There are some algorithms for large or unusual alphabets.

classification topicalization, Classify strings, bayesian classification, ART1 classification, k-means.

Each treats a document naively as a count of each type of word.

Cross-referencing documents by words and phrases; uses a longest match in a table to

build up list of documents.

matching Complexity of string processing: Chomsky hierarchy

string equality

sort comparison

String Comparison: Edit-distance (Levenshtein distance), Spell checking

String & substring matching: KMP

Prefix-matching, prefix tree:

Suffix-tree

Regex

Phase structured (parsing: a string into a graph), LALR(1) shift-reduce

substring
matching

Common sub-string identification: Karp-Rubin method, cross-reference of keyword

and object

Identifying keywords and phrases; concordance tables

Applications:

 cut-n-paste detection,

 plagiarism detection,

 compression tasks

 finding files, documents, webpages, etc by keyword

 finding documents / webpages with similar look or template (filters out normal

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 18

text, uses an alphabet of mark up / structuring elements)

structured
programming

Control structures

Modular composition

Program format

Comments

Readability is more important than efficiency.

Stepwise refinement

Program verification

symbol Constants, variables, types, fields, procedures, functions, programs, units, modules,

libraries, and packages. Some have an identifier, a name or other means of identifying

the symbol; typically such identifiers must be declared prior to use.

see also identifier

field A storage location

property Can be a field, have code associated with access or modification; can exhibit access

control

System C
Metro II

Tagged signal model

Component: threads generate events; events are associated with required port

interfaces. Port, who generated event (eg process), value set, set of tags.

Provided port receives processes and events from components with required ports.

Execution semantics. Revolve around the synchronization and execution of

processes, based on event scheduling and annotation. Scheduler, constraint solver,

annotation, mapping (relationship between events)

taint checking Attempts to catch use of unvalidated values – i.e. inputs not range checked. Range

checking is hard. It is not clear how to tell if a variable was range checked. Signed

should have upper and lower range check. Unsigned should have at least upper-range

checked. A destination might have flags indicate that it needs each of these.

task “Any individual computation, set of computations, decision-making logic, or

combination thereof that must be performed at run-time by software.”

temporal logic Temporal logic is, largely, the same as modal logic, except that it focuses more on the

analytical needs of computer science. Primarily declarative statements used to validate

the behaviour of various systems.

see also Büchi automaton, clock, modal logic, tense logic

Allen’s interval
algebra

X takes place before Y

X meets Y (one starts when the other ends)

X overlaps with Y

X starts Y (start of X == start of Y, duration of X < = duration of Y)

X during Y

X finishes Y

X is equal to Y

linear time Linear time is represented a sequence of events (there is no concept of duration),

augmenting prepositional logic with 8 operators describing the past and future:

Always after (in the future),

Sometime after (in the future),

Until

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 19

Next cycle

Always in the past

Sometime in the past

Since

Previous cycle

This can be used to analyze contracts and behaviour of procedures or algorithms. This

logic can be extended with counts or back-references.

See also Büchi automaton

metric Extends linear temporal logic with the concept of duration – each operator allows an

upper and lower bound on duration.

terms
binding

Conversion of expressions and terms into immediately operational or evaluatable

forms. Evaluation produces singular output in a specified range.

tracing variables tracks where a variable is assigned its value – the place in the code, and the call

path.

It also tracks the origin the value – the previous variable and time of assignment.

(which, in turn, may have its own origin of value).

traits A set of methods that are valid, implemented, and/or meaningful for an “object.” For

example, Apollo documentation suggested a regular file has the traits of

open/read/write/seek, etc. while tty's have another set of traits. The term may come

from LISP, Scheme, or Smalltalk. Is more flexible and harder to implement than

Objective-C and Java interfaces.

see also interface

translation
emulators

“interprets program instructions at run time”

binary translation “A set of techniques that directly translate compiled code” This can include profiling

“to guide optimization”

dynamic translator “translates between the legacy and the target ISA, caching the pieces of code for future

use.” May be integrated with the VMM: if a jump or access is made to a region of

memory that has not been translated, this can be trapped and passed back to the special

interpreter / translator.

 if (Native Code exists for VAddress)
 {

if address that called us is native, update to directly call the Native Code for the VAddress.
jump to that native code

 }
if (the execution count for the VAddress > translation threshold)
 {

translate the block, and update the mapping. update known translated callers to jump
directly to it.
jump to the native code

 }
interpret code to branch
if there is native code for the branch target
 set branch to jump to the native code
else
 redirect branch to the first step above

static translators “translates offline and can apply more rigorous code optimizations than” any other

(altman)

dynamic
optimization

Optimization issues: dead code elimination, address translation reduction, memory

aliasing reduction.

“ISA remapping – handle register overlaps present in the legacy ISA and remap to the

target ISA.”

Erik Altman, David Kaeli,

Yaron Staffer, “Welcome to

the opportunities of Binary

Translation” IEEE Computer

March 2000 Cindy Zheng, Carol Thompson

“PA-RISC to IA64: Transparent

Execution, No Recompilation”

IEEE Computer March 2000,

p47-52

Altman et al, ibid

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 20

“basic block reordering – keep the target image execution as sequential as possible so

that conditional branches will typically fall through, which helps speed instruction

fetching and cache performance.”

“memory coloring – improve the mapping of the translated image onto the memory

hierarchy of the target environment.”

“code specialization – clone procedures based on the invariance of parameter values.”

possible issues “the new architecture has fewer registers than some. legacy register values must be

kept in memory with costly loads and stores used to access them.”

“system states, stored in special-purpose registers.”

“memory mapped IO… references to IO locations can have side effects.. and must be

done in program order and without caching.”

“instructions that must execute atomically with respect to memory”

types of things in
a language

Operators.

Statements: control and declaration

Blocks

Functions & procedures

Modules

Signals & exceptions

Messages & events

Handlers

Variables

Identifiers

Defaults

types Constrain what can say about it’s interface and how to ensure compatibility.

dynamic Item stored in slot has a specific type associated with the item.

static Memory slot has a specific type associated with it; sound systems ensure that only

items of the same type are inserted into the slot.

latent-typing The types that a slot may have, based on knowledge about the possible types that may

set it.

parameterized
types

Write code once, but several types of arguments: eg templates.

See also widening.

partial ordering An object of type A can be converter to one of type B without loss of information. (B is “wider”

than A, or A is “less than” B)

safety Promotion to a wider, at least as accurate type, can be done automatically – so long as

there is only one conversion technique.

strictness Whether a type can be treated as another; auto-conversion

strong types Emphasis on catching errors as soon as possible, e.g. with the compiler; however it

makes modularity/components/reuse more difficult.

weak Safety is only possible with static analysis and extensive run-time checking. This

checking is done at the last possible moment, so the system may exhibit incorrect

behaviour only after running for extended period of time (after the actual violation).

types of small
data people like

Numbers, dates, arrays (indexed and associative), patterns, text and word

undefined access If using a slot that is not defined. Trapping this is difficult.

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 21

unification Unification is a key step in the resolution method, operating like regular expression

matching. Unification operates on a substitution table (see the example below) adding

further entries as it binds variables. Unification takes this table, a goal clause, and a

clause in the table. It tries every combination of variable assignments to make the two

clauses equivalent. It steps thru the both clauses in the same way:

If this element is a free variable, bind it to the corresponding element in the other

clause. This is done by adding an entry into the substitution table.

If this element is a bound variable, look up its value; if it is a literal, use that.

Perform the same on the other side. If the two values are defined, but do not match,

abort; unification cannot be performed.

If the element has parameter or sub-ordinate elements, a unification step is

performed on those parameter clauses of both main clauses.

This process repeats until no more items are added to the table.

This process effects the inference of variables values (or sets of acceptable values).

It can link variables together, showing those that alias each other. It can be modified

to remove possibilities from a potential set.

Term Rewriting systems perform a string substitution, replacing each occurrence of a

variable with its bound value.

It is easy to understand the substitution table in cases where a variable can be bound

to a simple value (e.g. a scalar or a string), a structure whose elements are found.

What makes unification powerful is the ability it for a variable to be bound to another

variable – v4 (in this context) will inherit whatever v1 is bound to. A variable can

also be bound to a structure, whose elements might not be bound, or might be bound

to another variable.

One drawback is that the table can have cycles. An occurs check operation can be

attempted to catch this occurrence, but the check is very expensive.

see also resolution principle, tableau

Variable Binding

v1 1
v2 “bob”
v3 house(red)
v4 v1
v5 house(v2)

valuation
function

In theories constructed as a model, one needs to know how names and terms refer to entities and their

properties, and how to evaluate sentences. For example Sally’s height & mass, or an electrons charge.

This is called a ‘valuation function’ although it is seldom a simple function, and often better understood

as a procedure. This valuation assigns value for formula based on those references and how they

combine (composition), table of forms and their values (idiomatic).

see also evaluation procedure

method1 One method is to use the problems declarative specification to specify a grammar and a family of

automatons. The first automaton is special in that the sentences it recognizes (accepts) are also

solutions to the problem. The other, optional, automatons generate fragments of the language that may

be present in the acceptable sentence(s). Despite the unusual pretense of the solution as a sentence in

an imaginary language, this technique can be very efficient.

see also Chomsky hierarchy, language fragment

variable
bound

Value of the variable is controlled by a quantifier, is a parameter or is a constant

free A variable that is not a constant, not a parameter, and is not controlled by a quantifier

visual Hypercard mid 1980s

John A Robinson “A machine

oriented logic based on the

resolution principle.” Journal

of the ACM 12(1):23-41

January 1965, Syracuse

University

Table 11: Example

substitution table

S O F T W A R E L A N G U A G E S · 2 0 1 8 . 0 8 . 1 3 22

programming
systems

Labview

NextStep Interface Builder 1988

Visual Basic 1991

WalkSAT for(I=1; I < Max Tries; I++)
{
 solution = random truth assignment
 for (J=1; J < MaxFlips; J++)
 {
 if all clauses satisfied clause then return solution
 c  random unsatisfied clause
 with probability p
 flip a random variable in c
 else
 flip variable in c that maximizes the number of satisfied claims
 }
}
return failure

max WalkSAT for(I=1; I < Max Tries; I++)
{
 solution = random truth assignment
 for (J=1; J < MaxFlips; J++)
 {
 m = sum of weights(sat clauses)
 if m > threshold then return solution
 c  random unsatisfied clause
 with probability p
 flip a random variable in c
 else
 flip variable in c that maximizes m
 }
}
return failure with best solution found

witness function A function that ‘testifies’ a proposition is highly likely to be true.

see also probability estimator

a version without memory

explosion is at

http://alchemy.cs.washington

.edu

